
Type-safe data binding on modern object-oriented
platforms

István Albert

Budapest University of Technology and Economics
Department of Automation and Applied Informatics
H-1111 Budapest, Goldmann György tér 3, Hungary

E-mail: ialbert@aut.bme.hu

ABSTRACT
Most object-oriented platforms support run-time type information to provide access to class members like fields
and methods. These solutions are often based on strings, textual names of types and members. Such approach
makes the systems very fragile and sensitive to modification of names and to other changes. This paper illustrates
an elegant and highly efficient solution for this problem which is also type-safe thanks to compile-time type
checking. The introduced new language construct supports access to class members through multiple
parameterized one-to-many associations. It can also be used in many languages and platforms which makes it an
ideal candidate to be used in real world systems.

Keywords
Programming Tools and Languages, reflection, association, data binding, C#.

1. INTRODUCTION
Today’s most wide-spread and most heavily used
programming paradigm is object-oriented paradigm
with imperative languages, like C++, Java or C# [8,
9, 10]. While the core concepts are quite solid, there
are numerous possible ways to improve the quality of
software. There are several current techniques to
customize this approach. In C++ language,
environment macros and templates [12] are heavily
used constructs. Java and .NET are introducing
generics [11, 18, 1, 16, 14, 7] (a kind of template
implementation for parameterized types) and we are
well aware of Design by Contract [4], as well as
aspect-oriented approach and other extremely useful
concepts. Many of these, although still under
research, are leaking into the world of applied
software technology [19].
One of the main goals of these enhancements is to

make the language and environment more type-safe
which would result in more stable applications with
less run-time errors.
This paper introduces an elegant and efficient way to
use typed reflection and so type-safe data binding.
The next two sections introduce reflection and data-
binding. After getting familiar with the problem, a
new language construct called navigation expression
is introduced. Its features are discussed in detail,
including multiple associations. The next section
compares navigation expressions with a similar
concept of delegates. Finally, an implementation plan
is suggested and a formal definition of C# language
changes is also proposed in the appendix.

2. RELATED WORK
There are reflection scenarios where programs use
strings to identify type members like methods and
fields. In some cases a more type-safe method can be
used. One of these is data binding on the CLI
platform.

Reflection: Accessing Type Information
at Run-time
Reflection mechanism provides objects that
encapsulate modules, types, methods, fields, etc [6].
With these constructs a program can examine the
structure of types, create instance of types, and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

mailto:ialbert@aut.bme.hu

invoke methods, access fields and properties. Similar
language and virtual machine support exists in the
Java platform [5] (reflection API); it is called RTTI
(Run-Time Type Information) in C++ [12].
According to the current C++ Standard [12], RTTI
has far less features than the Java or .NET
implementations: only type names, type equality and
inheritance hierarchy can be determined at run-time,
but no method list, method invocation, object
creation, field access, etc. are allowed. But there are
some currently researched theories and proof-of-
concept implementations of a full-fledged reflection
mechanism API in C++ [20, 21].
These solutions are based on string literals to refer to
member variables or methods. This highly flexible
approach is necessary but makes the systems very
fragile and sensitive to modification of names.
This paper illustrates an extension to the current
reflection models which could be very useful in
certain scenarios. We are using the "data binding"
scenario throughout this paper to analyze the problem
and the way the new language construct solves it.

Introduction to Data Binding
Consider the following example: we have a generic
component that displays data, and a program that uses
this component. The configuration of the component
determines which data is to be displayed; it also
defines its format. The data to be displayed is called
data source and is provided by the application. After
configuring the component and binding it to a data
source the application uses it to show the data to the
user.
This concept is called data binding in .NET and it is
very flexible and frequently used. Here is an
example:

public class DataVisualizer {
public object DataSource;
public string DataMember;
public void Render() {

Console.WriteLine(DataSource.GetType().
GetField(DataMember).GetValue(DataSource));

} }
public class Person { public string Name; }

public class MyApp {
public static void Main() {

DataVisualizer vis = new DataVisualizer();
Person p = new Person();
p.Name = “Stephen Albert”;
vis.DataSource = p;
vis.DataMember = “Name”;
vis.Render();

} }

Figure 1
The Render method uses reflection to extract data
from the data source object (an instance of the Person

class) which is based on DataMember holding a
textual reference to the Name field of the Person
class.
Although it may not be a good idea to use strings to
identify members, there are many examples where
this flexibility is quite useful. Reflection is often used
by generic frameworks and algorithms where type
information is not known or cannot be expressed at
compile-time. The most well-known platform feature
which uses reflection is serialization [6, 17]. During
this process an entire graph of objects is written to a
stream or created from a stream. Other typical
frameworks using this technology are object
persistency layers (both in J2EE and .NET [7, 13, 2]),
workflow engines, data access layers or data binding
components. This paper uses the data binding as an
illustration but the idea can be used in many other
frameworks as well. The samples are in C# on the
.NET platform but the main concept can be easily
transferred to another language or platform.

Open Problems
The problem with string based member access is
twofold. Since it uses strings, it is very easy to make a
typographic error (1), which is mostly discovered
only at run-time when Render() method is called (2).
The reason for the errors also seems to be twofold.
Firstly, the programmer could misspell the string and
give a wrong identifier, hence the reflection
mechanism cannot find the appropriate member by
name. This causes a run-time error.
Secondly, there can be a type mismatch between
DataSource and DataMember: the first one is the
object which is being read, the second one is the
expression which refers to a member. If the
DataSource is an object without a "Name" field, it
also causes a run-time error. This paper addresses
both issues.
With a suitable language construct the programmer
can get a compile-time error which is preferred to
run-time error [15, 22].

1. NAVIGATION EXPRESSIONS
The main purpose of DataMember is to traverse the
object hierarchy graph along associations and to
provide access to member variables (which can be
fields or properties). DataSource is the root of the
object graph. The example in Figure 1 shows only
one hop, but certainly it can take more hops to get to
the target member. A new language construct called
navigation is defined in the next sample as follows
(Figure 2):

public sealed class DataVisualizer {
public Navigation DataSource;
public void Render() {

Console.WriteLine(DataSource.ToString()); } }
public class MyApp { public static void Main() {

DataVisualizer vis = new DataVisualizer();
Person p = new Person();
p.Name = “Steve Albert”;
vis.DataSource = new Navigation(p.Name);
vis.Render(); } }

Figure 2
Navigation construct aggregates data source and data
member in one object and provides a run-time
evaluation of the expression with type safety.
Navigation instance has a strict root type at which the
traversal begins – in this case class Person. It contains
a dot-separated list of association names – type
members. The object graph is traversed through these
associations.
The navigation expression can be not only in the right
side of an equation, but in left side as well – it can be
an lvalue – which makes it possible to use bi-
directional data binding. In this case the expression is
used to set field and property values.

Fields, Properties, Indexers
A referenced type member can be a field, a property
or an indexer. Properties are named groups of
accessor method definitions that implement the
named property [6,23]. Indexers are parameterized
properties. The properties enable field-like access,
whereas indexers enable array-like access [3].

Multiple Associations
In many cases an association refers to multiple
objects and navigation expression must support it. To
be able to navigate through one-to-many associations,
parameters should be passed to the navigation object
at all those points where collections of objects are
referenced.
A one-to-many association must be an array or an
indexer (parameterized property), a technique widely
used in the CLI platform [6].
Each association may have zero or more parameters,
depending on its type. Field and property accessors
have no parameter at all, arrays have as many signed
integer parameters as the rank of the array, and also
indexers can have any number of parameters of any
type.
The parameter list of the navigation expression is the
concatenation of those parameters and can be derived
by examining a particular navigation expression and
the referenced members. Since indexers can be
overloaded with different parameter lists [6, 23], one
expression can actually refer to more than one
parameter list. Expressions must also contain named
parameters with types for unambiguous member
traversal.

A short sample for using navigations with one-to-
many associations (Figure 3):

... string [] myStrings = new string [] { “a”, “ab”, “abc” };
NavigationArray nav1 = new NavigationArray(

myStrings[int].Length);
for(int i = 0; i < myStrings.Length; i++)
Console.WriteLine(myStrings[i]+’:’+nav1[i].ToString());

Figure 3
In the above sample (Figure 3) a navigation object is
constructed with a string array being the root object.
This refers to multiple strings and, for usability, an
additional parameter should be supplied to choose
from the collection of referenced strings. In this
particular case only one parameter is
necessary: a signed integer. In a more complex case
more parameters could be used.

Cast operators
This version of navigation construct does not support
casting members. This will be discussed in a separate
paper. Navigation expression must be in pure format
of member names separated by dots, with optional
parameter lists like in Figure 4.

// compiles, no parameters
root.Member1.Member2
// compiles, with parameters
list[int].Column[string, State].Member
// does not compile with cast operator
((DataColumn) root.Member1).Member2

Figure 4

Root object ambiguity
The root of navigation expressions could be
ambiguous for object member access. Examining the
first code expression in Figure 4, the root object (the
root of the path) could be a reference to “root” or
“root.Member1” (both are references). To avoid this
situation, navigation expressions always use the first
object reference as root reference.
These syntax rules ensure that navigation is not an
expression evaluated at run-time but rather a compile-
time appearance of the object hierarchy path.

2. NAVIGATION TYPE DEFINERS
Reflection is most often used when type information
of parameters and objects is not known at compile-
time but can be acquired at run-time. In this way the
component and the application development can be
totally separated, which is crucial for generic
frameworks and scenarios like data binding.
Although strict type information is not known, the
way an object is handled is very often hardcoded in
the component.

For example a component that displays matrix data
uses data source as a two-dimensional array. A
component which displays a table uses data source as
a list and each column refers to a specific data
member. In these scenarios the data source must
satisfy the demands of the component, preferably
checked at compile-time.
To support this requirement, navigation expressions
are strictly typed.
The component that uses the navigation as a data
source determines the parameters and also the return
type of the expression. The type declarations for
Navigation and NavigationArray with respect to the
above samples (Figure 2 and Figure 3) are as follows:

navigation object Navigation;
navigation int NavigationArray(int i);

Figure 5
Navigation declaration and instantiation with
navigation expression are depicted in Figure 6.
However, a more formal definition can be found in
Appendix A: Formal C# language definition:

navigation type TypeName(formal-parameter-list);
TypeName var = new TypeName(

navigation-expression);

Figure 6
These types are generated automatically by the
compiler from the navigation declaration. Variables
of these types can only hold a reference to navigation
instances which have the same number of parameters
and the type of each parameter is the same or
inherited from the appropriate type in the navigation
declaration. The return type expression must also
match the type in the declaration with equality or
inheritance.
In this way the component can safely use data source
which conforms to its requirements and forms a
matrix, a list, etc. A client application is verified at
compile-time to check whether it supports the
appropriate data source with type safe member
references.
All this results in a type-safe data binding.

Inheritance and Access Modifiers
The type where the navigation object is created must
have access to the referenced members. Private
fields, properties, indexes can be used only when the
class itself declares a navigation to its own members.
Protected members can be used in derived classes,
internal members [6] in the same compilation unit
(assembly) accordingly. Public members can be used
anywhere.

A navigation type declaration can be public, internal,
protected or private just like a class declaration.
These modifiers define the visibility of the navigation
type just like class visibility does. Once a navigation
type is instantiated, it can be used by any class. If a
method of class A receives a navigation object as a
parameter, the method can use it to access the
referenced member independently of whether class A
has access to the member referenced by the
expression or not.
The compiler checks, for all but the last of properties
and fields and indexers in the association list, whether
they are readable and all are accessible by the
declaring class which creates the navigation object.
No write-only members are allowed through the
association path except the last one. An expression is
read-only if the last member is a read-only member
for the instantiating class, write-only if it is write-
only, and normal otherwise.

Comparison to Delegates
In CLI delegates are used as “object-oriented type-
safe function pointers” [6, 3]. They share common
ideas with navigation expressions. In both cases a
special language element is used for type definer
which allows type-safety by identifying methods to
invoke or members to be accessed later. The syntax is
quite similar, too [23, 3] (Figure 7):

void PrintInt(int i) { Console.WriteLine(i); }
delegate void MethodDelegate(int a);
MethodDelegate del =

new MethodDelegate(this.PrintInt);
del(42);
navigation int myNavigation(int);
string [] myStrings = new string [] { “a”, “ab”, “abc” };
myNavigation nav1 = new myNavigation(

myStrings[int].Length);
Console.WriteLine(nav1[2]);

Figure 7
The difference between the language constructs is
that the delegates are applicable to methods but not to
fields or properties (even though properties are
implemented as methods in CIL). Moreover,
delegates do not support navigation in the object
hierarchy; they only have a reference to a class
instance and a handle referencing a method of that
type. Navigations hold an entire reference path to
navigate through the object hierarchy and reach the
addressed field or property through multiple
associations. Data binding on .NET platform uses
properties and not methods for member access.
Hence in that case delegates are not applicable and
cannot be used for data binding.

3. COMPILER IMPLEMENTATION
A "compiler only" solution can be provided if only
one language is taken into consideration. After
checking syntax (see Section 5) and type consistency
the compiler generates extra code in place of
declaration, instantiation and usage (see Appendix
B).
Each navigation declaration is a type creator syntax
element (similar to class, interface, delegate and
array sign (‘[]’) [6, 23, 3]). The abstract type (class
A) is constructed by the compiler and is unique for
each navigation declaration. For each object
hierarchy path, a unique class (class B : A) is
generated by the compiler which finally derives from
type created for navigation declaration. Class A
contains two abstract methods for reading and writing
members (GetValue and SetValue methods).
Parameter lists are generated according to the
navigation declaration. Derived Class B provides
implementation for these abstract methods, using
strict type information.
Using reflection, dynamic navigation creation can
also be supported but it is not recommended, since it
ensures no type safety at all. In this scenario a
program can create navigation expression instances at
runtime, based on strings.
To measure performance impact we have modified
the Mono C# compiler. The compiler-generated type
safe navigation expressions are 10 to 50 times faster
than a reference solution with reflection.
The advantage of this “compiler only” approach is
that the runtime environment remains unchanged.
Only language compilers should be extended to
provide the new functionality. Similarly to delegates,
a navigation declaration is also a type declaration and
this type could be a basis for language
interoperability which is essential on the CLI
platform.

4. CONCLUSION
In this paper we have introduced a new C# language
construct that provides more type-safe solution with
compile-time errors rather than run-time errors. The
new language construct called navigation supports
access to class members through multiple
parameterized one-to-many associations and similarly
to delegates, a navigation declaration is also a type
declaration.
This solution is not only more type-safe but can also
provide a huge gain of performance in many
application scenarios.

5. APPENDIX A : FORMAL C#
LANGUAGE DEFINITION
The following list is the extension to C# language
grammar [23, Appendix A].

A.1.7 Keywords, Keyword: navigation

A.2.2 Types
Reference type: navigation-type
Navigation-type: type-name

A.2.4 Expressions
Primary-no-array-creation-expression:

navigation-creation-expression

Expression: navigation-creation-expression:
 new navigation-type (navigation-expression)
Navigation-expression:

expression
 navigation-expression . identifier

navigation-expression . identifier [type-list]
Type-list: type | type-list , type

A.2.5. Statements
Type-declaration: navigation-declaration

A.2.13. Navigations, navigation-declaration:
 attributesopt navigation-modifiersopt
navigation type identifier(fixed-parametersot)

navigation-modifiers:
navigation-modifier

 navigation-modifiers navigation-modifier
navigation-modifier:
new | public | protected |

internal | private

6. APPENDIX B : ILLUSTRATION OF
THE COMPILER GENERATED CODE
Navigation declaration:

public navigation string gridNavigation(
int row, int column);

Generated code:

public abstract class gridNavigation
:BaseNavigation
{

public abstract void SetValue(
int row, int column, string value);

public abstract string GetValue(
int row, int column);

}

Navigation instantiation:
string [][] birthData = new string [][] { new string [] {

“Blaise Pascal”, “1623-1662”, “Clermont” },
new string [] {
“Sir Isaac Newton”, “1642-1727”, “Woolsthorpe” },…

}; …
gridNavigation nav1 = new gridNavigation(

birthData [int][int]);

Generated code:
… public sealed class gridNavigation_nav1 :

gridNavigation {
String [][] rootObj;
public myNavigation_1(string [][] root)
{

rootObj = root; }
public override string GetValue(

int row, int column) {
return rootObj[row][column]; }

public override void SetValue(
int row, int column, string value) {

rootObj[row][column] = value;
} }
…gridNavigation nav1 =

new gridNavigation_nav1(birthData);

Navigation usage:
public class DataGrid {

public gridNavigation DataSource;
public int RowNumber, ColumnNumber;
public void Render() {

for(int r = 0; r < RowNumber; r++) {
for(int c = 0; c < ColumnNumber; c++) {

Console.Write(DataSource[r, c]);
if(c < ColumnNumber – 1)

Console.Write(“, “); }
Console.WriteLine(); } } }

Generated code:
… for(int c = 0; c < ColumnNumber; c++) {

Console.Write(DataSource.GetValue(r, c));
if(c < ColumnNumber – 1)Console.Write(“, “);

} …

7. REFERENCES
[1] A. Kennedy and D. Syme.: Design and
implementation of generics for the .NET Common
Language Runtime. ACM SIGPLAN, PLDI, pages 1–
12, Snowbird, Utah, June 2001.
[2] A. Homer, D. Sussman, M. Fussell: First Look at
ADO.NET and System.Xml v.2.0 (Addison Wesley,
2003)
[3] A. Hejlsberg, S. Wiltamuth, P. Golde, The C#
Programming Language (Addison Wesley, 2003)
[4] B. Meyer, Eiffel: the language (Prentice Hall,
New York, NY, first edition, 1992)
[5] B. Joy, G. Steele, J. Gosling, G. Bracha, The
Java Language Specification, Second Edition (
Addison-Wesley, 2000)
[6] ECMA-335 Common Language Infrastructure
(CLI), ECMA, December 2001. http://www.ecma.ch/
[7] ECMA TC39-TG2/2004/14, C# Language
Specification, Working Draft 2.7, Jun, 2004

[8] Gartner Inc. (Michael J. Blechar): The Impact of
Web Services Architecture on Application
Development, 26 August 2002
[9] Gartner Inc.: J2EE and .NET Will Vie for E-
Business Development Efforts, 28 April 2003
[10] Gartner Inc. (Joseph Feiman): The Gartner
Programming Language Survey, 1 October 2001
[11] G. Bracha, M. Odersky, D. Stoutamire: Making
the future safe for the past: Adding genericity to the
programming language. OOPSLA, ACM, Oct. 1998.
[12] International Standard: Programming Languages
- C++. ISO/IEC. 2003. Number 14882:2003 (E) in
ASC X3, ANSI, New York, NY, USA.
[13] JSR 12: JavaTM Data Objects (JDO)
Specification. http://jcp.org/en/jsr/detail?id=12, 2003
[14] JSR-14, Add Generic Types To The Java
Programming Language. Available on line at
http://jcp.org/en/jsr/detail?id=014, 2004
[15] K. B. Bruce. Typing in object-oriented
languages: Achieving expressibility and safety.
Technical report, Williams College, 1996.
[16] M. Lucia Barron-Estrada, R. Stansifer: A
Comparison of Generics in Java and C#, 41st ACM
Southeast Regional Conference, March 2003
[17] M, Hericko, M, B. Juric, I. Rozman, S.
Beloglavec, A. Zivkovic, Object serialization analysis
and comparison in Java and .NET., SIGPLAN
Notices 38(8): 44-54 (2003)
[18] O. Agesen, S. Frølund, and J. C. Mitchell.:
Adding parameterized types to Java. In Object-
Oriented Programming: Systems, Languages,
Applications, pages 215-230. ACM, 1997.
[19] R. Bruce Findler, M. Latendresse, M. Felleisen,
Behavioral contracts and behavioral subtyping, ACM
SIGSOFT Software Engineering Notes, Volume 26 ,
Issue 5, September 2001
[20] S. Chiba, A Metaobject Protocol for C++, ACM
Conference on Object-Oriented Programming
Systems, Languages, and Applications, 1995
[21] S. Roiser, Reflection in C++, CERN, February
2004 (Available on-line at
http://doc.cern.ch//archive/electronic/cern/others/LH
B/internal/lhcb-2003-116.pdf)
[22] R. Finkel: Advanced Programming Language
Design (Addison Wesley, 1995)
[23] Standard ECMA-334 C# Language
Specification, ECMA, December 2001. Available on-
line at http://www.ecma.ch/

	1. INTRODUCTION
	2. RELATED WORK
	Reflection: Accessing Type Information at Run-time
	Introduction to Data Binding
	Open Problems

	1. NAVIGATION EXPRESSIONS
	Fields, Properties, Indexers
	Multiple Associations
	Cast operators
	Root object ambiguity

	2. NAVIGATION TYPE DEFINERS
	Inheritance and Access Modifiers
	Comparison to Delegates

	3. COMPILER IMPLEMENTATION
	4. CONCLUSION
	5. APPENDIX A : FORMAL C# LANGUAGE DEFINITION
	6. APPENDIX B : ILLUSTRATION OF THE COMPILER GENERATED CODE
	7. REFERENCES

